

Precision Reduction Gear RV[™] Precision Gearhead

RD2 Series

Nabtesco's technologies supporting society

Contributing to Society with Our 'Moving it. Stopping it.' Technologies

Nabtesco manufactures products which are used in everyday life. Our high-accuracy components are essential for moving objects; they may be rarely visible, but are the foundation of everyday objects that you see moving and wonder how. Nabtesco's technologies are found throughout objects that move and stop people's lives.

Who is Nabtesco?

The key word of Nabtesco is 'motion control.' We use our strengths in the fields of component and systems technologies to develop highly creative products. Through the Nabtesco Group as a whole, we can also utilize our advantage of expertise to maximum effect in order to further enhance these strengths.

In the air, on land and at sea, we have established a large share in various fields of both international and domestic markets. Nabtesco will continue to evolve by utilizing its strengths in many fields and by exploring the possibilities of the future.

The business alliance between Teijin Seiki and NABCO on hydraulic equipment projects was the beginning of a mutual confirmation by the companies of the other's product configuration, core technologies, corporate strategies and corporate culture. This led to a common recognition that a business merger would be an extremely effective means of increasing corporate value and achieving long-term development. Based on this mutual judgment, in 2003 an equity transfer was conducted to establish Nabtesco as a pure holding company, with both firms as wholly owned subsidiaries. After a year of preparation, both companies were absorbed and amalgamated by means of a short form merger, and Nabtesco was transitioned to an operating holding company.

02-03	What is the RD2 Series?
04-05	RD2 Series Product Line
06-07	Solutions from Nabtesco
08	Main Applications
09	Principle of Operation
10	Product Code Selection
11	Overview of Features (listed by input type)
Straight	Input Type
13	Product Codes / Configuration Diagram
14–15	Rating Table
16–39	External Dimensions
Right Ar	igle Input Type
41	Code Description / Configuration Diagram
42-43	Rating Table
44-67	External Dimensions
Pulley In	iput Type
69	Code Description / Configuration Diagram
70	Rating Table
71-81	External Dimensions
Motor FI	ange / Bushing
83–85 86–103	Selection Table of Motor Flange Code and Bushing Code External Dimensions
Option:	Base Flange
105–106	Code Description / Configuration Diagram
107	External Dimensions
Technica	al Information
109	Considering the use of RD2 Series
110	Glossary
111 112–119 120	Product Selection Flowchart Model code selection examples Allowable Moment Diagram Technical Data
121–125 126 127–128	No-load Running Torque Calculation of Tilt Angle and Torsion Angle Engineering Notes Appendix
129	Inertia Moment Calculation Formula
130	Troubleshooting checksheet
131	Order Information Sheet
Back inside cover	Warranty

What is the RD2 Series?

RD2: The gear that will change everything

A highly developed Precision Reduction Gear RV[™] that offers high quality, high performance and ease of use.

Industrial robot

Precision Reduction Gear RV[™]

Precision Reduction Gear RV enables the precision movements of industrial robots and also ensures their strength. Precision Reduction Gear RV has been praised for being compact and lightweight while offering high precision and rigidity. Since its debut in 1985, Precision Reduction Gear RV has been selected for use by most major industrial robot manufacturers around the world.

Precision Gearhead RD2 Series

Nabtesco took the Precision Reduction Gear RV, which is highly trusted and valued in the industry and created the RD Series. The RD Series is a pre-lubricated model with a sealed structure that can be easily mounted on all major motors. The RD2 Series, a new version with three input configurations, offers customers dramatically expanded freedom of design.

Motor fastener components

Simple mounting

RD2 Series Product Line

RD2 Series: Designed to meet a variety of customer needs

Pulley input type

Solutions from Nabtesco

Nabtesco RD2 Series offer a variety of solutions

Reduced number of components Reduced cost of assembly Reduced cost of design

More components

Higher design cost

Higher assembly cost

Main Applications

Examples of Uses for the RD2 Series (for reference)

Positioner (tilting axis)

- Glass Substrate/ Wafer Rotation and Positioning

Positioner (rotary axis)

Palletizing Robots

Ball Screw Drive

■ AGV Drive

Principle of Operation

- Rotation of the servomotor is transmitted through the input gear to the spur gears, and the speed is reduced according to the gear ratio between the input gear and the spur gears. <Fig. 1> Note: For the hollow shaft series, the rotation of the servomotor is transmitted from the input gear through the center gear to the spur gears.
- Since the crankshafts are directly connected to the spur gears, they have the same rotational speed as the spur gears. <Fig. 1>
- 3. Two RV gears are mounted around the needle bearings on the eccentric section of the crankshaft. (In order to balance the equal amount of force, two RV gears are mounted.) <Fig. 2>
- **4.** When the crankshafts rotate, the two RV gears mounted on the eccentric sections also revolve eccentrically around the input axis (crank movement). <Fig. 2>
- **5.** Pins are arrayed in a constant pitch in the grooves inside the case. The number of pins is just one larger than the number of RV gear teeth. <Fig. 3>
- 6. As the crankshafts revolve one complete rotation, the RV gears revolve eccentrically one pitch of a pin (crank movement), with all the RV teeth in contact with all of the pins. As a result, 1 RV gear tooth moves in the opposite direction of the crankshaft rotation. <Fig. 3>
- 7. The rotation is then output to the shaft (output shaft) via the crankshaft so that the crankshaft rotation speed can be reduced in proportion to the number of pins. <Fig. 3>
- 8. The total reduction ratio is the product of the first reduction ratio multiplied by the second reduction ratio. Note: For the hollow shaft series, the rotation of the servomotor is transmitted from the input gear through the center gear to the spur gears.

■ Fig. 3. Second reduction section

■ Fig. 1. First reduction section

■ Fig. 2. Crankshaft section

Product Code Selection

• Select "Simple Product Selection" from "Product Selection".

You can designate the applicable model by simply clicking on the items in a sequence of five steps according to the product type and the motor for use.

The motor can be selected in accordance with the watt value or from the series of the manufacturer of the motor for use.

► When you select the specified motor from the manufacturer, the display also shows the codes of the motor flange and the bushing that are applicable to the motor.

2. CAD Data Download

You may also download CAD data, either 3D CAD (STEP file) or 2D CAD (DXF file).

Note: Free membership registration is required to download the CAD data.

ameau				
	Product CAD Drawing 2D		Product CAD Drawing 3D	
110	RDS-006E-xxx-G0-ZZ-ZZ_ver1.dxf	^	RDS-006E-xxx-G0-ZZ-ZZ.STEP	^
	RDS-006E-xxx-G1-ZZ-ZZ_ver1.dxf		RDS-006E-xxx-G1-ZZ-ZZ.STEP	
	RDS-020E-xxx-G0-ZZ-ZZ_ver1.dxf		RDS-020E-xxx-G0-ZZ-ZZ.STEP	
	RDS-020E-xxx-G1-ZZ-ZZ_ver1.dxf		RDS-020E-xxx-G1-ZZ-ZZ.STEP	- 1
	RDS-040E-xxx-G2-ZZ_ver1.dxf		RDS-040E-xxx-G2-ZZ-ZZ.STEP	
	RDS-040E-xxx-G3-ZZ-ZZ_ver1.dxf	~	RDS-040E-xxx-G3-ZZ-ZZ.STEP	
	RDS-0805-yyy-02-77-77 vor1 dyf	•	RDS_080F_VVV.02.77.77 STED	· · · ·

Note: The above website displays are only images from the current site.

Overview of Features (listed by input type) A

Input type	Reduction gear configuration	Product	Product features	Corresponding speed ratio	Allowable acceleration/ deceleration torque (Nm)	Items not included	External dimensions
input type	Solid series		 The total length in the axial direction has been reduced 	31 to 258	117 to 7 840	Servomotor	P.16 ▼ P.27
Straight	Hollow shaft series		by up to 15% as compared to the previous series.				P.28 ▼ P.39
e input type	Solid series		 Equipment can be more compact Can be installed in 	31 to 258	117 to 7 840	Sarvamator	P.44 ▼ P.55
Right angl	Hollow shaft series		 confined space Table can be made shorter 	5110 200	11/10/,040		P.56 ▼ P.67
nput type	Solid series		 Belt input is possible Motor can be installed anywhere 	57 to 157	412 to 7 840	Servomotor	P.71 ▼ P.75
Pulley ir	Hollow shaft series		 Speed ratio can be changed using pulley 			pulley	P.76 ▼ P.81

Straight Input Type

Straight Input Type Product Code / Configuration Diagram

Produ	ct co	de				
RDS	-040)E-1	53 - G2 - CF	- 1E		
	_	_				
↓ Ma	odel Code	↓ ↓	Ratio Code	Input unit code	Motor flange code	Bushing code
Straight input code	006	Series code	031, 043, 054, 079, 103	G0 : Corresponding motor shaft diameter Ø8 to 14 G1 : Corresponding motor shaft diameter Ø14 to 24		
	020		041, 057, 081, 105, 121, 161	G0 : Corresponding motor shaft diameter Ø8 to 14 G1 : Corresponding motor shaft diameter Ø14 to 24	•	
	040	E: Solid corico	041, 057, 081, 105, 121, 153	G2 : Corresponding motor shaft diameter Ø14 to 24 G3 : Corresponding motor shaft diameter Ø25 to 35]	
	080	E. Solid series	041, 057, 081, 101, 121, 153	G2 : Corresponding motor shaft diameter Ø14 to 24 G3 : Corresponding motor shaft diameter Ø25 to 35		
	160		066, 081, 101, 121, 145, 171	G4 : Corresponding motor shaft diameter Ø19 to 28 G5 : Corresponding motor shaft diameter Ø32 to 42	2-alphabetic	2-letter code of a numeric and
S	320		066, 081, 101, 121, 141, 185	G4 : Corresponding motor shaft diameter Ø19 to 28 G5 : Corresponding motor shaft diameter Ø32 to 42	character code ZZ: None	an alphabetic characters
5	010		081, 108, 153, 189, 243	G0 : Corresponding motor shaft diameter Ø8 to 14 G1 : Corresponding motor shaft diameter Ø14 to 24	(The code will differ depending on motor	ZZ: None (The code will differ
	027		100, 142, 184, 233	G0 : Corresponding motor shaft diameter Ø8 to 14 G1 : Corresponding motor shaft diameter Ø14 to 24	to be mounted.)	depending on motor to be mounted.)
	050	C: Hollow shaft	109, 153, 196, 240	G2 : Corresponding motor shaft diameter Ø14 to 24 G3 : Corresponding motor shaft diameter Ø25 to 35		
	100	series	101, 150, 210, 258	G2 : Corresponding motor shaft diameter Ø14 to 24 G3 : Corresponding motor shaft diameter Ø25 to 35		
	200		106, 156, 206, 245	G4 : Corresponding motor shaft diameter Ø19 to 28 G5 : Corresponding motor shaft diameter Ø32 to 42		
	320		115, 157, 207, 253	G4 : Corresponding motor shaft diameter Ø19 to 28 G5 : Corresponding motor shaft diameter Ø32 to 42		

Note: For selection of motor flange and bushing, see the selection tables on pages 83 – 85 or visit the Nabtesco website (URL : http://precision.nabtesco.com/).

Configuration diagram

Rating Table Straight Input Type

Solid series

///

							Red	duction G	iear						
		T,	N ₀	к	T _{S1}	T _{s2}	N _{in}	Ns	N _{To}				Mo	Wr	
Model Code	Ratio code (Reduction ratio value)	Rated Torque	Rated Output Speed	Life Rating	Allowable Startup/Stop Torque	Momentary maximum allowable torque	Allowable Input Speed (Note 2)	Allowable Output Speed (Note 2)	Reference value to output speed during continuous operation at rated torque	^t Backlash	Lost motion	Start-up Efficiency	Allowable moment (Note 3)	Allowable radial load (Note 8)	External Dimensions
		(Nm)	(rpm)	(h)	(Nm)	(Nm)	(rpm)	(rpm)	(rpm)	(arc.min.)	(arc.min.)	(%)	(Nm)	(N)	
	031 (31)							100	100						Input Unit
	043 (43)							81	76						Code : G0
RDS-006E	054 (53.5)	58	30	6,000	117	294	3,500	65	63	1.5	1.5	70	196	2,170	P.16
	079 (79)							44	44						Code : G1
	103 (103)							34	34	-					——P.17
	041 (41)							75	75						
	057							61	56	-					Input Unit
	081							43	42	-					Code : G0 P.18
RDS-020E	105	167	15	6,000	412	833	3,500	33	33	1.0	1.0	75	882	7,785	Input Unit
	121							29	29	-					Code : G1
	161							22	22	-					1.15
	041							70	37						
	057							53	35	-					Input Unit
	081							37	34	-					Code : G2
RDS-040E	105	412	15	6,000	1,029	2,058	3,000	29	29	1.0	1.0	70	1,666	11,529	Input Unit
	121							25	25	-					Code : G3
	153							20	20	-					F.21
	041							70	34						
	057							53	31	-					Input Unit
	081							37	29	-					Code : G2
RDS-080E	101	784	15	6,000	1,960	3,920	3,000	30	28	1.0	1.0	75	2,156	13,146	Input Unit
	121							25	25	-					Code : B3
	153							20	20	-					P.23
	066							30	20						
	081							25	18	-					Input Unit
	(81)							20	16	-					Code : G4
RDS-160E	121	1,568	15	6,000	3,920	7,840	2,000	17	15	1.0	1.0	75	3,920	18,666	Input Unit
	(121)							14	14	-					Code : G5
	(145)							12	12	-					P.25
	066							30	15						
	(66)							25	12	-					Input Unit
	(81)							20	9	-					Code : G4
RDS-320E	(101)	3,136	15	6,000	7,840	15,680	2,000	17	7	1.0	1.0	80	7,056	28,066	Input Unit
	(121)							14	6	-					Code : G5
	(141)							11	4	-					P.27
	(185)							- 11	+						

Hollow shaft series

							Red	duction G	iear						
		T ₀	N ₀	к	T _{S1}	T _{S2}	N _{in}	Ns	Ντο				Mo	Wr	
Model Code	Ratio code (Reduction ratio value)	Rated Torque	Rated Output Speed	Life Rating	Allowable Startup/Stop Torque	Momentary maximum allowable torque	Allowable Input Speed (Note 2)	Allowable Output Speed (Note 2)	Reference value to output speed during continuous operation at rated torque	Backlash	Lost motion	Start-up Efficiency	Allowable moment (Note 3)	Allowable radial load (Note 8)	External Dimensions
		(Nm)	(rpm)	(h)	(Nm)	(Nm)	(rpm)	(rpm)	(rpm)	(arc.min.)	(arc.min.)	(%)	(Nm)	(N)	
	081 (81)							43	43						Input Unit
	108 (108)							32	32						Code : G0
RDS-010C	153	98	15	6,000	245	490	3,500	23	23	1.0	1.0	65	686	5,755	P.28
	189							19	19	-					Code : G1
	243							14	14	-					——P.29
	100							35	35						Input Unit
	(141.69)							25	25	-					Code : G0
RDS-027C	184	265	15	6,000	662	1,323	3,500	19	19	1.0	1.0	70	980	6,533	Input Unit
	233							15	15	-					Code : G1
	(233.45)							28	28						Input Unit
	(109)							20	20	-					Code : G2
RDS-050C	(152.6)	490	15	6,000	1,225	2,450	3,000	15	15	1.0	1.0	70	1,764	9,418	Input Unit
	(196.2) 240							13	13	-					Code : G3
	(239.8)							30	20						P.33
	(100.5)							20	17	-					Code : G2
RDS-100C	(150) 210	980	15	6,000	2,450	4,900	3,000	20	17	1.0	1.0	80	2,450	11,802	P.34
	(210)							14	14	-					Code : G3
	(258)							12	12						P.35
	(105.83)							19	16	-					Code : G4
RDS-200C	(155.96)	1,960	15	6,000	4,900	9,800	2,000	13	12	1.0	1.0	80	8,820	31,455	——P.36
	206 (206.09)					,	,	10	10				,		Input Unit
	245 (245.08)							8	8						P.37
	115 (115)							17	17						Input Unit
DDO 0000	157 (157)	0.400	45	0.000	7.040	45 000	0.000	13	13		10		00 500	57 400	P.38
RD3-320C	207 (207)	3,130	15	0,000	/,840	15,000	2,000	10	10	1.0	1.0	80	20,580	57,103	Input Unit
	253 (253)							8	8	1					Code : G5

Notes:

The rating table shows the specification values including the entry fields for reduction gear values.
 The allowable speed may be limited by heat depending on the operating rate. Make sure the surface temperature of the reduction gear does not exceed 60°C during use.
 The allowable moment will differ depending on the thrust load. Check the allowable moment diagram (p.120).

4. For the moment of inertia of the reduction gears, refer to the external dimension drawings for the reduction gear.
5. For the moment rigidity and torsional rigidity, refer to the calculation of tilt angle and the torsion angle (p.126).
6. The rated torque is the value that produces the rated service life based on operation at the rated output speed; it does not indicate the maximum load. Refer to the "Glossary" (p.110) and the "Product selection flowchart" (p.111).
7. The specifications above are based on Nabtesco evaluation methods; this product should only be used after confirming that it is expecifications the accuration for the anomaly in the anomaly in the anomaly of the anomaly in the anomaly of the anomaly in the anomaly of the an

appropriate for the operating conditions of your system.

8. When the radial load is applied within dimension b (see page 126), use the reduction gear within the allowable radial load.

Right Angle Input Type

Right Angle Input Type Code Description / Configuration Diagram

Produ	ct co	de				
RD R	- 080	DE-0	41 – H3 – GD]- ZZ		
↓ Mo	del Code \downarrow	<u> </u>	Ratio Code	Input unit code	Motor flange code	Bushing code
Right angle input code	Torque code	Series code				2401119 0040
	006		031, 043, 054, 079, 103	H0 : Corresponding motor shaft diameter Ø8 to 14 H1 : Corresponding motor shaft diameter Ø14 to 24		
	020		041, 057, 081, 105, 121, 161	H0 : Corresponding motor shaft diameter Ø8 to 14 H1 : Corresponding motor shaft diameter Ø14 to 24		
	040		041, 057, 081, 105, 121, 153	H2 : Corresponding motor shaft diameter Ø14 to 24 H3 : Corresponding motor shaft diameter Ø25 to 35		
	080	E: Solid series	041, 057, 081, 101, 121, 153	H2 : Corresponding motor shaft diameter Ø14 to 24 H3 : Corresponding motor shaft diameter Ø25 to 35		
	160		066, 081, 101, 121, 145, 171	H4 : Corresponding motor shaft diameter Ø19 to 28 H5 : Corresponding motor shaft diameter Ø32 to 42		2-letter code of
	320		066, 081, 101, 121, 141, 185	H4 : Corresponding motor shaft diameter Ø19 to 28 H5 : Corresponding motor shaft diameter Ø32 to 42	2-alphabetic character code	an alphabetic characters
R	010		081, 108, 153, 189, 243	H0 : Corresponding motor shaft diameter Ø8 to 14 H1 : Corresponding motor shaft diameter Ø14 to 24	depending on motor	ZZ: None (The code will differ
	027		100, 142, 184, 233	H0 : Corresponding motor shaft diameter Ø8 to 14 H1 : Corresponding motor shaft diameter Ø14 to 24	to so mounted.y	depending on motor to be mounted.)
	050	C: Hollow shaft	109, 153, 196, 240	H2 : Corresponding motor shaft diameter Ø14 to 24 H3 : Corresponding motor shaft diameter Ø25 to 35		
	100	series	101, 150, 210, 258	H2 : Corresponding motor shaft diameter Ø14 to 24 H3 : Corresponding motor shaft diameter Ø25 to 35		
	200		106, 156, 206, 245	H4 : Corresponding motor shaft diameter Ø19 to 28 H5 : Corresponding motor shaft diameter Ø32 to 42		
	320		115, 157, 207, 253	H4 : Corresponding motor shaft diameter Ø19 to 28 H5 : Corresponding motor shaft diameter Ø32 to 42		

Note: For selection of motor flange and bushing, see the selection tables on pages 83 - 85 or visit the Nabtesco website (URL : http://precision.nabtesco.com/).

Configuration diagram

Pulley input type Motor flange / bushing

Right angle input type Straight input type

Solid series

							Red	duction G	iear						
		Т₀	N₀	к	T _{S1}	T _{S2}	Nin	Ns	Ντο				Mo	Wr	
Model Code	Ratio code (Reduction	Rated Torque	Rated Output	Life Rating	Allowable Startup/Stop	Momentary maximum	Allowable Input	Allowable	Reference value to output	Backlash	Lost	Start-up	Allowable	Allowable radial	External Dimensions
	ratio value)		Speed		Torque	allowable torque	Speed (Note 2)	Speed (Note 2)	continuous operation at rated torque		motion	Linciency	(Note 3)	load (Note 8)	
		(Nm)	(rpm)	(h)	(Nm)	(Nm)	(rpm)	(rpm)	(rpm)	(arc.min.)	(arc.min.)	(%)	(Nm)	(N)	
	031 (31)							100	100						Input Unit
	043 (43)							81	76						Code : H0
RDR-006E	054 (53.5)	58	30	6,000	117	294	3,500	65	63	2.0	2.0	70	196	2,170	P.44
	079 (79)							44	44						Code : H1
	103 (103)	1						34	34	1					P.45
	041 (41)	108			271	543		75	55						
	057 (57)	151			378	755		61	44	1					Input Unit
	081 (81)							43	35	ĺ					Code : H0 P.46
RDR-020E	105	1	15	6,000			3,500	33	30	1.5	1.5	75	882	7,785	Input Unit
	121 (121)	167			412	833		29	28						Code : H1
	161							22	22						
	041	400			1,000	2,000		70	32						
	057							53	30						Input Unit
	081							37	28						Code : H2 P.48
RDR-040E	105	412	15	6,000	1,029	2,058	3,000	29	27	1.5	1.5	70	1,666	11,529	Input Unit
	121							25	25						Code : H3
	153							20	20						
	041	400			1,000	2,000		70	35						
	057	556			1,390	2,781		53	31						Input Unit
	081							37	29						Code : H2 ——P.50
RDR-080E	101		15	6,000			3,000	30	27	1.5	1.5	75	2,156	13,146	Input Unit
	121	784			1,960	3,920		25	25						Code : H3
	153							20	20						
	066							30	20						
	081							25	18						Input Unit
	101							20	16						Code : H4 ——P.52
RDR-160E	121	1,568	15	6,000	3,920	7,840	2,000	17	14	1.5	1.5	75	3,920	18,666	Input Unit
	145							14	13						Code : H5
	171							12	12						1.00
	066	1,800			4,503	9,002		30	14						
	081	2,209			5,527	11,048		25	9						Input Unit
	101	2,755	-		6,892	13,776		20	7						Code : H4
RDR-320E	121		15	6,000			2,000	17	6	1.5	1.5	80	7,056	28,066	Input Unit
	141	3,136			7,840	15,680		14	5						Code : H5
	185							11	4						F.00
	(185)	I	1	I	I					I		I	I		l

Hollow shaft series

							Rec	luction G	iear						
		T _o	N ₀	к	T _{S1}	T _{s2}	N _{in}	Ns	N _{To}				Mo	Wr	
Model Code	Ratio code (Reduction ratio value)	Rated Torque	Rated Output Speed	Life Rating	Allowable Startup/Stop Torque	Momentary maximum allowable torque	Allowable Input Speed (Note 2)	Allowable Output Speed (Note 2)	Reference value to output speed during continuous operation at rated torque	Backlash	Lost motion	Start-up Efficiency	Allowable moment (Note 3)	Allowable radial load (Note 8)	External Dimensions
		(Nm)	(rpm)	(h)	(Nm)	(Nm)	(rpm)	(rpm)	(rpm)	(arc.min.)	(arc.min.)	(%)	(Nm)	(N)	
	081 (81)							43	39						Input Unit
	108 (108)							32	31						Code : H0
RDR-010C	153 (153)	98	15	6,000	245	490	3,500	23	23	1.5	1.5	65	686	5,755	P.56
	189 (189)							19	20						Code : H1
	243 (243)							14	14						——P.57
	100 (99.82)							35	23						Input Unit
	142 (141.68)							25	18						P.58
RDR-027C	184 (184)	265	15	6,000	662	1,323	3,500	19	15	1.5	1.5	70	980	6,533	Input Unit
	233 (233.45)							15	14						Code : H1
	109 (109)							28	28						Input Unit
	153 (152.6)							20	20						Code : H2 P.60
RDR-050C	196 (196.2)	490	15	6,000	1,225	2,450	3,000	15	15	1.5	1.5	70	1,764	9,418	Input Unit
	240 (239.8)							13	13						Code : H3 ——P.61
	101 (100.5)							30	19						Input Unit
	150 (150)							20	17						Code : H2 P.62
RDR-100C	210 (210)	980	15	6,000	2,450	4,900	3,000	14	14	1.5	1.5	80	2,450	11,802	Input Unit
	258 (258)							12	12						Code : H3
	106 (105.83)							19	11						Input Unit
	156							13	8						Code : H4 P.64
RDR-200C	206	1,960	15	6,000	4,900	9,800	2,000	10	6	1.5	1.5	80	8,820	31,455	Input Unit
	245 (245 08)							8	5						Code : H5
	115							17	14						Input Unit
	157							13	11						Code : H4
RDR-320C	207	3,136	15	6,000	7,840	15,680	2,000	10	7	1.5	1.5	80	20,580	57,103	Input Unit
	253 (253)							8	8						Code : H5

Notes:

1. The rating table shows the specification values including the entry fields for reduction gear values.

The rating table shows the specification values including the entry needs to reduction gear values.
 The allowable speed may be limited by heat depending on the operating rate. Make sure the surface temperature of the reduction gear does not exceed 60°C during use.
 The allowable moment will differ depending on the thrust load. Check the allowable moment diagram (p.120).
 For the moment of inertia of the reduction gears, refer to the external dimension drawings for the reduction gear.
 For the moment rigidity and torsional rigidity, refer to the external dimension drawings for the reduction gear.
 The table speed may be used the reduction decription of the reduction of the reduction decription of the reduction angle (p.126).

The rated torque is the value that produces the rated service life based on operation at the rated output speed; it does not indicate the maximum load. Refer to the "Glossary" (p.110) and the "Product selection flowchart" (p.111).
 The specifications above are based on Nabtesco evaluation methods; this product should only be used after confirming that it is appropriate for the operating conditions of your system.
 When the radial load is applied within dimension b (see page 126), use the reduction gear within the allowable radial load.

Option: Base flange

Pulley input type

Pulley Input Type Code Description / Configuration Diagram

Product code 050 C - 109 F3 **RD P** ZZ Model Code Ratio Code Input unit code Motor flange code Bushing code Pulley input code Series code Torque code 020 081 F0 040 057 F3 F4 080 E: Solid series 081 F6 160 066 081 F7 320 ZZ: No bushing ZZ: No motor flange (The pulley input (The pulley input Ρ F1 010 108 type does not come type does not come 027 100 F2 with a motor flange.) with a bushing.) 050 109 F3 C: Hollow shaft series F5 100 101 F8 106 200 F9 320 157

The input unit code for the pulley input type is one code for each model number.

Configuration diagram

Solid series

							Red	luction (Gear						lr	nput sha	ft	
Model Code	Ratio code (Reduction ratio value)	T₀ Rated Torque	N₀ Rated Output Speed	K Life Rating	T _{S1} Allowable Startup/Stop Torque	T _{s2} Momentary maximum allowable torque	N _{in} Allowable Input Speed (Note 2)	N _s Allowable Output Speed (Note 2)	N _{To} Reference value to output speed during continuous operation at rated torque	Back- lash	Lost motion	Start-up Efficiency	M _o Allowable moment (Note 3)	Wr Allowable radial load (Note 8)	M _{oin} Rated moment	M _{Sin} Allowable moment	β dimen- sions	External Dimensions
		(Nm)	(rpm)	(h)	(Nm)	(Nm)	(rpm)	(rpm)	(rpm)	(arc.min.)	(arc.min.)	(%)	(Nm)	(N)	(Nm)	(Nm)	(mm)	
RDP-020E	081 (81)	167			412	833	3,500	43	43			75	882	7,785	38	38	58	Input Unit Code : F0 ——P.71
RDP-040E	057 (57)	412			1,029	2,058	0.000	53	25			80	1,666	11,529	70	122	70.0	Input Unit Code : F3 ——P.72
RDP-080E	081 (81)	784	15	6,000	1,960	3,920	3,000	37	24	1.0	1.0	80	2,156	13,146	/8	133	73.8	Input Unit Code : F4 ——P.73
RDP-160E	066 (66)	1,568			3,920	7,840	2 000	30	15			80	3,920	18,666	450	295	00.0	Input Unit Code : F6 ——P.74
RDP-320E	081 (81)	3,136			7,840	15,680	2,000	25	12			85	7,056	28,066	100	417	80.0	Input Unit Code : F7 ——P.75

Hollow shaft series

							Red	luction (Gear						Ir	nput sha	ft	
Model Code	Ratio code (Reduction ratio value)	T₀ Rated Torque	N₀ Rated Output Speed	K Life Rating	T _{S1} Allowable Startup/Stop Torque	T _{S2} Momentary maximum allowable torque	N _{in} Allowable Input Speed (Note 2)	N _S Allowable Output Speed (Note 2)	N _{To} Reference value to output speed during continuous operation at rated torque	Back- lash	Lost motion	Start-up Efficiency	M _o Allowable moment (Note 3)	Wr Allowable radial load (Note 8)	M _{Oin} Rated moment	M _{Sin} Allowable moment	β dimen- sions	External Dimensions
		(Nm)	(rpm)	(h)	(Nm)	(Nm)	(rpm)	(rpm)	(rpm)	(arc.min.)	(arc.min.)	(%)	(Nm)	(N)	(Nm)	(Nm)	(mm)	
RDP-010C	108 (108)	98			245	490	3 500	32	32			75	686	5,755	20	38	50	Input Unit Code : F1 ——P.76
RDP-027C	100 (99.82)	265			662	1,323	3,500	35	28			75	980	6,533	30	40	50	Input Unit Code : F2 ——P.77
RDP-050C	109 (109)	490			1,225	2,450		28	23			80	1,764	9,418		90		Input Unit Code : F3 P.78
RDP-100C	101 (100.5)	980	15	6,000	2,450	4,900	3,000	30	18	1.0	1.0	80	2,450	11,802	78	134	73.8	Input Unit Code : F5 ——P.79
RDP-200C	106 (105.83)	1,960			4,900	9,800		19	14			80	8,820	31,455		230		Input Unit Code : F8 ——P.80
RDP-320C	157 (157)	3,136			7,840	15,680	2,000	13	13			85	20,580	57,103	158	215	86.6	Input Unit Code : F9 ——P.81

Notes:

Notes:
1. The rating table shows the specification values including the entry fields for reduction gear values.
2. The allowable speed may be limited by heat depending on the operating rate. Make sure the surface temperature of the reduction gear does not exceed 60°C during use.
3. The allowable moment will differ depending on the thrust load. Check the allowable moment diagram (p.120).
4. For the moment of inertia of the reduction gears, refer to the external dimension drawings for the reduction gear.
5. For the moment rigidity and torsional rigidity, refer to the calculation of tilt angle and the torsion angle (p.126).
6. The rated torque is the value that produces the rated service life based on operation at the rated output speed; it does not indicate the maximum load. Refer to the "Glossary" (p.110) and the "Product selection flowchart" (p.111).
7. The specifications above are based on Nabtesco evaluation methods; this product should only be used after confirming that it is appropriate for the operating conditions of your system

appropriate for the operating conditions of your system.

8. When the radial load is applied within dimension b (see page 126), use the reduction gear within the allowable radial load.

Motor Flange / Bushing

0270	
02	
_	
15	
8	
2	
Щ.	
ğ	
°.	
Щ	
ő	
Ŷ	
ð	
<u>e</u>	
6	
õ	
Ð	
b	
Ĕ	
Ĩ	
at	
<u>0</u>	
d	
þ	
<	
ġ.	
Se	
ä	
e	
0	
5	
2	
ž	
2	
he	
Ŧ	
5	
5	
ion	
lsion	
ension	
mension	
dimension	
e dimension	
the dimension	
n the dimension	
on the dimension	
ed on the dimension	_
sed on the dimension	
based on the dimension	
e based on the dimension	
de based on the dimension	40 Q11
code based on the dimension	0 40 041
g code based on the dimension	
ing code based on the dimension	
hing code based on the dimension	00 to 01 1
ushing code based on the dimension	40m Q0 40 Q1 1
bushing code based on the dimension	00 to 10 to 01 1
d bushing code based on the dimension	motor: Q0 to Q1 A
and bushing code based on the dimension	inmotor: Q0 to Q11
e and bushing code based on the dimension	diamatar. Ro ta R11
de and bushing code based on the dimension	
code and bushing code based on the dimension	
e code and bushing code based on the dimension	
ige code and bushing code based on the dimension	
ange code and bushing code based on the dimension	
flange code and bushing code based on the dimension	
or flange code and bushing code based on the dimension	
otor flange code and bushing code based on the dimension	motor choft diamater. Go to G11
notor flange code and bushing code based on the dimension	
e motor flange code and bushing code based on the dimension	tod motor choft diamator: 00 to 011
he motor flange code and bushing code based on the dimension	stod motor chot diamater Q0 to Q1
t the motor flange code and bushing code based on the dimension	control motor choft diamater: Q0 to Q11
ect the motor flange code and bushing code based on the dimension	success motor cheft diamater: Go to G1
elect the motor flange code and bushing code based on the dimension	innerted meter cheft diemeter: 00 to 011

Motor shaft tolerance

h6 h6

면 전 전 연

	Bushing	Motor shaft Mi	Øf	80	6	10	11	6	11	14	0				t te	Bolt size e C	a a	ł	-
		Bushing	5	0A	OB	00	QO	OE	OF	ZZ		هر	C	Þ	×				
		Stepped part max length	(mm) g	3.5	4	4	4	5	4	11	4	11	16	13	5.5	7	9	ო	л 2
		Bolt size e		M4	M4	M4	M5	M5	M6	9M6	9M6	M8	M8	M6	M4	M6	M4	M5	MF
		Bolt P.C.D.	q	46	60	20	20	06	6	100	100	115	165	100	46	6	60	75	63
		Motor mounting pilot length (mm)	c (*)	ę	5	5	5	9	9	9	9	9	9	9	ო	9	£	9	
	Motor flange	Motor mounting pilot tolerance		h7	h7	h7	h7	h7	h7	h7	h7	h7	h7	h7	h7	h7	h7	h7	47
		Motor mounting pilot diameter (mm)	Øb	30	50	50	50	20	70	80	80	95	115	80	90	70	50	60	40
		· shaft i (mm) a	Max.	30	31	31	31	32	31	38	31	38	43	40	32	34	33	30	30
Ø14		Motor length	Min.	23	23	23	23	24	23	30	23	30	35	32	25	26	25	23	23
meter: Ø8 to		Motor flange code		AA	AB	AC	AD	AE	AF	AG	AH	AJ	AK	AL	AM	AN	AP	AQ	AR
otor shaft dia		Input unit code		input type)		G			gle input type)										
Supported mo		Model Code		Reduction gear (straight	RDS-006E	RDS-020E	RDS-010C	RDS-027C	Reduction gear (right an	RDR-006E	RDR-020E	RDR-010C	RDR-027C						

Хa
maximum
the
indicates
length
pilot
le motor mounting
4 T *

Supported motor shaft diameter: Ø14 to Ø24

						Motor flange						Bushing	
Model Code	Input unit code	Motor flange code	Motor length a	shaft (mm)	Motor mounting pilot diameter (mm)	Motor mounting pilot tolerance	Motor mounting pilot length (mm)	Bolt P.C.D.	Bolt size e	Stepped part max length	Bushi	Motor shaf diameter(m	t n) Motor shaft tolerance
		<u>.</u>	Min.	Max.	Øb		c (*1)	σ		(mm) g	5	Øf	
Reduction gear (straight in	nput type)	CA	28	55	50	h7	9	70	M5	6.5	1B	15	h6
RDS-006E		CB	28	55	70	24	5.5	06	M5	6.5	1C	16	РЮ
RDS-020E	2	S	28	55	70	24	5.5	06	M6	6.5	1D	17	РЮ
RDS-010C	5	CD	30	57	80	24	9	100	M6	8.5	1	19	h6
RDS-027C		GE	30	57	95	24	9	115	M6	8.5	1F	22	h6
Reduction gear (right ang	le input type)	CF	30	57	95	24	9	115	M8	8.5	16	14	k6
RDR-006E		CC	32	59	110	24	7	135	M8	10.5	1H	19	k6
RDR-020E	Ĭ	CH	32	59	110	h7	7	145	M8	10.5	11	16	k6
RDR-010C		CJ	47	74	110	24	7	145	M8	25.5	ZZ	24	94
RDR-027C		сĸ	32	59	114.3	24	5	200	M12	10.5	6A *2	11	0,40
		CL	32	59	115	2 Y	9	165	M8	10.5	6B *	14	Tanor1/10
		CM	32	59	130	h7	9	165	M10	10.5	6C *4	16	
		CN	32	59	200	2 Y	5	235	M12	10.5			
		CP	37	64	80	47	9	100	MG	15.5			
		ca	35	62	95	h7	9	115	M8	13.5			
		CR	40	67	110	h7	7	145	M8	18.5			
		CT	32	59	110	h7	7	130	M8	10.5			
		cu	28	55	60	h7	I	75	M5	6.5			
		*1 The motor mounting *2 Select a motor flang	g pilot le je base	ength in d on a	ndicates the maxin motor shaft lengtl	mum value of the	capable range.	*3 Select *4 Select	t a motor fla t a motor fla	ange based	on a motor s on a motor s	shaft length of 44 shaft length of 58	mm. mm.
			,							,		,	

JØ P

lue of the capable range

Straight input type

Right angle input type

Pulley input type

Motor flange / bushing

Option: Base flange

Technical Information

Select the motor flange code and bushing code based on the dimension of the motor to be used. Applicable model code: RD -040E,080E,050C,100C

4
N
Ø
0
ŭ
4
<u></u>
3
9
ā
Ť
e
3
9
σ
Ľ
a,
ē
5
5
ŭ
0
Ē
5
σ
Ō
ť
5
ŏ
ā
1
1
U)

onported mic			2 R							
						Motor flange				
Model Code	Input unit code	Motor flange code	Motor length	· shaft (mm) a	Motor mounting pilot diameter (mm)	Motor mounting pilot tolerance	Motor mounting pilot length (mm)	Bolt P.C.D.	Bolt size e	Stepped max lenç
			Min.	Max.	Øb		c (*1)	q		(mm)
Reduction gear (straigh	t input type)	CA	34	55	50	h7	9	70	M5	ß
RDS-040E		CB	34	55	70	h7	5.5	06	M5	5
RDS-080E	Č	ပ္ပ	34	55	70	h7	5.5	06	M6	5
RDS-050C	22	CD	36	57	80	h7	9	100	MG	7
RDS-100C		CE	36	57	95	h7	9	115	M6	2
Reduction gear (right ar	ngle input type)	CF	36	57	95	h7	9	115	M8	7
RDR-040E		CG	38	59	110	h7	7	135	M8	6
RDR-080E	C	CH	38	59	110	h7	7	145	M8	6
RDR-050C		C	53	74	110	h7	7	145	M8	24
RDR-100C		S	38	59	114.3	h7	5	200	M12	6
		CL	38	59	115	h7	9	165	M8	6
		CM	38	59	130	h7	9	165	M10	6
		CN	38	59	200	h7	5	235	M12	6
		СР	43	64	80	h7	6	100	MG	14
		ca	41	62	95	h7	6	115	M8	12
		CR	46	67	110	h7	7	145	M8	17

Bushing	Motor shaft diameter(mm)	Motor shaft
code	Øf	tolerance
1A	14	h6
1B	15	94
10	16	h6
1D	17	94
1E	19	94
1F	22	h6
1G	14	k6
1H	19	k6
1J	16	k6
ZZ	24	h6
6A *2	11	010
6B *3	14	+0. I/U Taner1/10
6C *4	16	

ed part length m) g

*3 Select a motor flange based on a motor shaft length of 44 mm. *4 Select a motor flange based on a motor shaft length of 58 mm. ດ Μ8 130 *1 The motor mounting pilot length indicates the maximum value of the capable range. *2 Select a motor flange based on a motor shaft length of 37 mm.

h7 ЧZ

19 110

59 67

38

СŢ

Motor shaft tolerance

Motor shaft ameter(mm

Øf 25

Bushing

(+0.010/0)

35

ŧ

Ъ

٩Ø

łØ

Bolt size E

qø à

ହ ହ ହ ହ ହ ହ ହ ହ ହ ହ

32 28 32 33 32

Supported motor shaft diameter: Ø25 to Ø35

	Motor flange coc	GA	GB	CC	GD	GE	GF	GG	GH	GJ	GK
LOI OIGHT OI	Input unit code	it input type)		č	3		ngle input type)		13	2	
	Model Code	Reduction gear (straigh	RDS-040E	RDS-080E	RDS-050C	RDS-100C	Reduction gear (right al	RDR-040E	RDR-080E	RDR-050C	RDR-100C

		0									1	\sim	ÞX.	2
		Bushing code		3A	3B	3C	3D	3E	ZZ		æ	~		
		Stepped part max length	(mm)	7	6	6	6	6	6	19	19	14	6	
		Bolt size e		M8	8M	M8	M12	M10	M12	8M	M12	M8	M8	
		Bolt P.C.D.	σ	115	135	145	200	165	235	145	200	145	130	
		Motor mounting pilot length (mm)	c (*)	8	7	7	5	9	9	7	5	7	7	
	Motor flange	Motor mounting pilot tolerance		h7	h7	h7	h7	h7	h7	h7	h7	h7	h7	
		Motor mounting pilot diameter (mm)	Øþ	95	110	110	114.3	130	200	110	114.3	110	110	
		shaft (mm)	Max.	81	83	83	83	83	83	93	93	88	83	
202		Motor length a	Min.	36	38	38	38	38	38	48	48	43	38	:

* The motor mounting pilot length indicates the maximum value of the capable range

Model Code Code Input unit CodeInput unit codeMotor flange codeMotor shaft end motor flange ("1)Motor mounting plot diameter (mm)Motor mounting plot toleranceBolt size plot length (mm)Bolt size max length max length max length max lengthModel Code CodeMotor flange code BDS-160EMotor flange code endMotor mounting plot diameter (mm)Motor mounting plot toleranceBolt size plot length (mm)Bolt size max length max length max lengthReduction gear (straight input type)G4367195h777135MBS9Reduction gear (straight input type)G43873110h777145MB9Reduction gear (straight input type)G43873114.3h777145MB9Reduction gear (straight input type)GF3873114.3h776145MB9Reduction gear (straight input type)GF3873114.3h776799Reduction gear (straight input type)GF3873114.3h776145MB9Reduction gear (straight input type)H48883114.3h776799Reduction gear (straight input type)H48373114.3h776799Reduction gear (straight input type)H483114.3h777145M		OLUI SIIAIL V	מומ		210							
Model Code Code CodeInput unit Code CodeMotor shaft code PCOMotor shaft plot diameter (mm) PC.Motor mounting plot length (mm) PC.Bolt size plot length (mm) dBolt size plot shaft plot length (mm) dBolt size plot length (mm) dBolt size plot shaft max length dBolt size max lengthBolt size max length dBolt size max lengthBolt size max lengthBol								Motor flange				
	Model Code	Input unit code		Motor flange code	Motor length a	shaft (mm)	Motor mounting pilot diameter (mm)	Motor mounting pilot tolerance	Motor mounting pilot length (mm)	Bolt P.C.D.	Bolt size e	Stepped part max length
Reduction gear (straight input type) GA 36 71 95 h7 8 115 M8 7 Reduction gear (straight input type) GB 38 73 110 h7 7 135 M8 9 RDS-320E GB 73 110 h7 7 145 M8 9 RDS-320E G4 23 73 114.3 h7 7 145 M8 9 RDS-200C 38 73 114.3 h7 5 200 M12 9 Reduction gear (right angle input type) GF 38 73 200 h7 6 235 M12 9 Reduction gear (right angle input type) GF 48 73 200 h7 6 235 M12 9 Reduction gear (right angle input type) H4 88 73 200 h7 6 235 M12 9 Reduction gear (right angle input type) H4 88 714					Min.	Мах.	Øb		c (*1)	q		(mm) g
RDS-160E GB 38 73 110 h7 7 135 M8 9 RDS-320E RBS-320E G4 38 73 110 h7 7 145 M8 9 RDS-320C B 73 114.3 h7 7 145 M8 9 RDS-320C 38 73 114.3 h7 5 200 M12 9 Reductiongear (right angle input type) GE 38 73 200 h7 6 235 M12 9 Reductiongear (right angle input type) GE 48 83 110 h7 6 235 M12 9 Rout 230E H4 48 83 114.3 h7 6 200 M12 9 Rout 230E H4 148 83 114.3 h7 6 200 M12 9 Rout 230E H4 143 7 145 M8 14	Reduction gear (straig	ht input type)		GA	36	71	95	h7	œ	115	M8	7
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	RDS-160E			GB	38	73	110	h7	7	135	M8	6
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	RDS-320E	č		CC	38	73	110	h7	2	145	M8	6
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	RDS-200C	5		GD	38	73	114.3	h7	5	200	M12	6
Reduction gear (right angle input type) GF 38 73 200 h7 6 235 M12 9 RDR-160E GG 48 83 110 h7 7 145 M8 19 RDR-30E H4 88 114.3 h7 5 200 M12 19 RDR-30E H4 48 83 114.3 h7 5 200 M12 19 RDR-200C 43 78 110 h7 7 145 M8 14 RDR-320C *1 The motor mounting pliot length indicates the maximum value of the capable range. 145 M8 14	RDS-320C			GE	38	73	130	h7	9	165	M10	6
RDR-160E GG 48 83 110 h7 7 145 M8 19 RDR-320E H4 ER 83 114.3 h7 5 200 M12 19 RDR-200C H3 73 78 110 h7 7 145 M8 14 RDR-200C H3 78 110 h7 7 145 M8 14 RDR-320C *1 The motor mouting pilot length indicates the maximum value of the capable range. *145 M8 14	Reduction gear (right a	angle input type)		GF	38	73	200	h7	9	235	M12	6
RDR-320E H4 GH 48 83 114.3 h7 5 200 M12 19 RDR-200C H3 7 110 h7 7 145 M8 14 RDR-200C H3 78 110 h7 7 145 M8 14 RDR-320C *1 The motor mounting pilot length indicates the maximum value of the capable range. *1 The motor mounting pilot length indicates the maximum value of the capable range. M12 145 M8 14	RDR-160E			90	48	83	110	h7	2	145	M8	19
RDR-200C 14 GJ 43 78 110 h7 7 145 M8 14 RDR-320C *1 The motor mounting pilot length indicates the maximum value of the capable range. *1 The motor mounting pilot length indicates the maximum value of the capable range. 145 145 145	RDR-320E			GH	48	83	114.3	h7	5	200	M12	19
RDR-320C *1 The motor mounting pilot length indicates the maximum value of the capable range.	RDR-200C	±		GJ	43	78	110	h7	2	145	M8	14
	RDR-320C			*1 The motor mounting	pilot le	ength ir	idicates the maxir	mum value of the	capable range.			

Motor shaft

tolerance

diameter(mm) Øf

Motor shaft Bushing

Bushing

code

h6

2B

к6 к В 94

19 24 19 24 24

ЗD 2C

Supported motor shaft diameter: Ø19 to Ø28

*2 Select a motor flange based on a motor shaft length of 58 mm.

Supported motor shaft diameter: Ø32 to Ø42

						Motor flange					
Model Code	Input unit code	Motor flange code	Motor length a	shaft (mm)	Motor mounting pilot diameter (mm)	Motor mounting pilot tolerance	Motor mounting pilot length (mm)	Bolt P.C.D.	Bolt size e	Stepped part max length	Bushir code
			Min.	Max.	Øþ		c (*1)	q		(mm) g	
Reduction gear (straigh	t input type)	AL	56	86	110	h7	7	145	M8	7	4A
RDS-160E		B	54	84	114.3	h7	5	200	M12	5	4B
RDS-320E	ų	PC	85	115	114.3	h7	5	200	M12	36	4C
RDS-200C	3	۵ſ	57	87	180	h7	5	215	M12	œ	4D
RDS-320C		ЭĽ	54	84	200	h7	5	235	M12	5	4E
Reduction gear (right al	ngle input type)	Ξſ	87	117	200	h7	5	235	M12	38	4F
RDR-160E		D	59	89	114.3	h7	5	200	M12	10	ZZ
RDR-320E	4	Ηſ	54	84	130	h7	10	165	M10	2	
RDR-200C	Ĉ	*1 The motor mounting	3 pilot l€	sngth in	dicates the maxir	num value of the	capable range.				2 V 2
RDR-320C		*2 Select a motor flanc	je base	i a uo pa	motor shaft lengtl	h of 102 mm.					

(+0.010/0)	94	k6	9Y	94	9Y	+0.1/0 Taper1/10	
35	38	32	38	35	42	32	
4B	4C	4D	4E	4F	ZZ	9A *2	

+0.1/0 Taper1/10

7A *2

28 16

2

Motor shaft tolerance

diameter(mm) Øf Motor shaft

Bushing

94

32

Pulley input type Right angle input type Technical Information Option: Base flange Motor flange / bushing

Option: Base Flange

An optional base flange is available. This allows the RD2 to be easily installed in the equipment and enhances the usability.

Base flange

RD2 series

Base Flange Code Description / Configuration Diagram

R

Select codes in accordance with the presence or mounting direction of the base flange.

Rightward input

Configuration diagram

Configuration diagram

Right angle input type

Pulley input type

This product features high precision and high rigidity, however, it is necessary to strictly comply with various restrictions and make considerations to maximize the product's features. Please read this technical document thoroughly and select and adopt an appropriate model based on the actual operating environment, method, and conditions at your facility.

Export

• When this product is exported from Japan, it may be subject to the export regulations provided in the "Foreign Exchange Order and Export Trade Control Order". Be sure to take sufficient precautions and perform the required export procedures in advance if the final operating party is related to the military or the product is to be used in the manufacture of weapons, etc.

Application

• If failure or malfunction of the product may directly endanger human life or if it is used in units which may injure the human body (atomic facilities, space equipment, medical equipment, safety units, etc.), examination of individual situations is required. Contact our agent or nearest business office in such a case.

Safety measures

Although this product has been manufactured under strict quality control, a mistake in operation or misuse can
result in breakdown or damage, or an accident resulting in injury or death. Be sure to take all appropriate safety
measures, such as the installation of independent safeguards.

Product specifications indicated in this catalog

• The specifications indicated in this catalog are based on Nabtesco evaluation methods. This product should only be used after confirming that it is appropriate for the operating conditions of your system.

Operating environment

Use the reduction gear under the following environment:

·Location where the ambient temperature is between -10°C and 40°C.

Location where the humidity is less than 85% and no condensation occurs.
Location where the altitude is less than 1000 m.

Well-ventilated location

Do not install the reduction gear at the following locations.

·Locations where a lot of dust is collected.

Outdoor areas that are directly affected by wind and rain Locations near to areas that contains combustible, explosive, or corrosive gases and flammable materials.

Location that is heated due to heat transfer and radiation from peripherals and direct sun.

Location where the performance of the servomotor can be affected by magnetic fields or vibration.

Note 1: If the required installation environment cannot be established, contact our customer representative in advance.
 Note 2: When using the reduction gear under special conditions (clean room, equipment for food, concentrated alkali, high-pressure steam, etc.), contact our customer representative in advance.

Maintenance

 The standard replacement time for lubricant is 20,000 hours. However, when operation involves a reduction gear surface temperature above 40°C, the state of degradation of the lubricant should be checked in advance of that and the grease replaced earlier as necessary.

Reduction gear temperature

When the reduction gear is used under high load and at a high duty ratio, it may overheat and the surface temperature may
exceed the allowable temperature. Be aware of conditions so that the surface temperature of the reduction gear does not
exceed 60°C while it is in operation. There is a possibility of damage (to the product) if the surface temperature exceeds 60°C.

Reduction gear output rotation angle

• When the range of the rotation angle is small (10 degrees or less), the service life of the reduction gear may be reduced due to poor lubrication or the internal parts being subject to a concentrated load.

Note: Contact us in case the rotation angle is 10 degrees or less.

Manuals

• Safety information and detail product instructions are indicated in the operation manual. The operation manual can be downloaded from the following website.

http://precision.nabtesco.com/

109 -

echnical Information /

Option: Base flange

Life rating

The lifetime resulting from the operation with the rated torque and the rated output speed is referred to as the "life rating ".

Allowable acceleration/deceleration torque

When the machine starts or stops, the load torque to be applied to the reduction gear is larger than the constant-speed load torque due to the effect of the inertia torque of the rotating part. In such a situation, the allowable torque during

acceleration/deceleration is referred to as "allowable acceleration/deceleration torque".

Note: Be careful that the load torque, which is applied at startup and stop, does not exceed the allowable acceleration/deceleration torque.

Momentary maximum allowable torque

A large torque may be applied to the reduction gear due to execution of emergency stop or by an external shock. In such a situation, the allowable value of the momentary applied torque is referred to as "momentary maximum allowable torque".

Note: Be careful that the momentary excessive torque does not exceed the momentary maximum allowable torque.

Allowable input speed

The allowable value of the input speed is referred to as "allowable input speed".

Note: The reduction gear temperature may increase significantly even when the speed is under the allowable speed depending on the speed ratio. In such a case, use the reduction gear at the speed so that the gear temperature is 60°C or lower.

Allowable output speed

The allowable value of the output speed is referred to as "allowable output speed".

Note: The reduction gear temperature may exceed 60°C even when the speed is under the allowable output speed depending on the specification conditions (duty, ambient temperature). In such a case, use the reduction gear at the speed so that the gear temperature is 60°C or lower.

Allowable output speed reference value

This is a reference value of the output speed at which the temperature increase of the reduction gear is 40°C or lower when the rated torque is applied to the reduction gear and the gear is operated continuously in one direction.

Note: Maintain the environment and operation conditions so that the temperature of the reduction gear is 60°C or lower.

Torsional rigidity, lost motion, backlash

When a torque is applied to the output shaft while the input shaft is fixed, torsion is generated according to the torque value. The torsion can be shown in the hysteresis curves.

The value of b/a is referred to as "torsional rigidity."

The torsion angle at the mid point of the hysteresis curve width within $\pm 3\%$ of the rated torque is referred to as "lost motion." The torsion angle when the torque indicated by the hysteresis curve is equal to zero is referred to as "backlash."

Hysteresis curve

Startup efficiency

The efficiency of the moment when the reduction gear starts up is referred to as "startup efficiency."

No-load running torque (input shaft)

The torque for the input shaft that is required to run the reduction gear without load is referred to as "no-load running torque."

Allowable moment and maximum thrust load

The external load moment may be applied to the reduction gear during normal operation. The allowable values of the external moment and the external axial load at this time are each referred to as "allowable moment" and "maximum thrust load."

Input shaft rated moment

This is the moment load that satisfies the life rating. The moment to be applied normally must be less than the rated moment.

Input shaft allowable moment

This is the allowable value of the load that can be applied for startup and stop.

Product Selection **Product Selection Flowchart**

A limitation is imposed on the motor torque value according to the momentary maximum allowable torque of the selected reduction gear. (Refer to page 119) When the reduction gear selection is completed, select a motor flange and bushing. (Refer to pages 83 to 85.)

Product Selection **Model code selection examples** (With horizontal shaft installed)

With horizontal rotational transfer

Step 1. Set the items required for selection.

Setting item	Setting
Presence of hollow in the output surface of the reduction gear	Hollow (C type)
Reduction gear mounting direction	Vertical shaft installation
Equipment weight to be examined	
W _A ———— Disk weight (kg)	450
W _B ——— Work weight (kg)	100 x 4 pieces
Equipment configuration to be examined	
D ₁ ———— Disk: D dimension (mm)	1,200
a ——— Work piece: a dimension (mm)	200
b Work piece: b dimension (mm)	400
D ₂ ——— Work piece: P.C.D. (mm)	800
Operation conditions	
θ ——— Rotation angle (°)*1	180
[t ₁ +t ₂ +t ₃] — Rotation time (sec)	2.5
[t ₄] ——— Cycle time (sec)	20
Q1 — Equipment operation hours per day (hours/day)	12
Q2 — Equipment operation days per year (days/year)	365

40

-10

-10

S₀(°C)

40

S₁(°C)

*1. When the range of the rotation angle is small (10 degrees or less), the rating life of the reduction gear may be reduced due to poor lubrication or the internal parts being subject to a concentrated load.

Step 2. Verify the operating environment.

Checkpoint	Standard value
S ₀ ———Ambient temperature (°C)	-10 to +40
S1 ——— Reduction gear surface temperature (°C)	60 or less

Note: Refer to "Operating environment" on p. 109 for values other than those listed above.

Step 3-1. Examine the reduction gear load

Setting item		Calculation formula	Selection examples	
(1) Cale	culate the inertia moment b	ased the calculation formula on page	9 129.	
I _R	Load inertia moment (kgm²)	$I_{R1} = \frac{W_A \times \left(\frac{D_1}{2 \times 1,000}\right)^2}{2}$ $I_{R2} = \left[\frac{W_B}{12} \left\{ \left(\frac{a}{1,000}\right)^2 + \left(\frac{b}{1,000}\right)^2 \right\} + W_B \times \left(\frac{D_2}{2 \times 1,000}\right)^2 \right] \times n$ $I_{R1} = \text{Disk inertia moment}$ $I_{R2} = Work inertia$ $I_R = I_{R1} + I_{R2}$ $n = \text{Number of workpieces}$	$I_{R1} = \frac{450 \times \left(\frac{1,200}{2 \times 1,000}\right)^2}{2}$ = 81 (kgm ²) $I_{R2} = \left[\frac{100}{12} \left[\left(\frac{200}{1,000}\right)^2 + \left(\frac{400}{1,000}\right)^2\right] + 100 \times \left(\frac{800}{2 \times 1,000}\right)^2\right] \times 4$ = 70.7 (kgm ²) $I_R = 81 + 70.7$ = 151.7 (kgm ²)	
(2) Exa	mine the constant torque.			
T _R	Constant torque (Nm)	$T_{R} = (W_{A} + W_{B}) \times 9.8 \times \frac{D_{in}}{2 \times 1,000} \times \mu$ $\mu = Friction factor$ Note: Use 0.015 for this example as the load is applied to the bearing of the RD2 reduction gear. $D_{in} = \text{Rolling diameter: Use the pilot diameter}$ which is almost equivalent to the rolling diameter in this selection calculation. * If the reduction gear model is not determined, select the following pilot diameter: Solid series = 284(mm) - Maximum pilot diameter Hollow shaft series = 440(mm) - Maximum pilot diameter	$T_R = (450 + 100 \times 4) \times 9.8 \times \frac{440}{2 \times 1,000} \times 0.015$ = 27.5 (Nm)	

Product Selection **Model code selection examples** (With vertical shaft installed)

With vertical rotational transfer

Step 1. Set the items required for selection.

Setting item	Setting
Presence of hollow in the output surface of the reduction gear	Without hollow (Solid series)
Reduction gear mounting direction	Horizontal shaft installation
Equipment weight to be examined	
W _C ——— Mounted work weight (kg)	490
Equipment configuration to be examined	
a ————————————————————————————————————	500
b	500
c C dimension (mm)	320
Operation conditions	
θ ——— Rotation angle (°)*1	90
[t ₁ +t ₂ +t ₃] — Rotation time (sec)	1.5
[t ₄] ———— Cycle time (sec)	20
Q1 — Equipment operation hours per day (hours/day)	24
Q ₂ ———Equipment operation days per year (days/year)	365

*1. When the range of the rotation angle is small (10 degrees or less), the rating life of the reduction gear may be reduced due to poor lubrication or the internal parts being subject to a concentrated load.

Step 2. Verify the operating environment.

Checkpoint	Standard value
S ₀ ———Ambient temperature (°C)	-10 to +40
S1Reduction gear surface temperature (°C)	60 or less

Note: Refer to "Operating environment" on p. 109 for values other than those listed above.

Step 3-1. Examine the reduction gear load

	Setting item	Calculation formula	Selection examples
(1) Cal	culate the inertia moment b	ased the calculation formula on page	129.
I _R	Load inertia moment (kgm²)	$I_{R} = \frac{W_{C}}{12} \times \left\{ \left(\frac{a}{1,000} \right)^{2} + \left(\frac{b}{1,000} \right)^{2} \right\} + W_{C} \times \left(\frac{C}{1,000} \right)^{2}$	$I_{R} = \frac{490}{12} \times \left\{ \left(\frac{500}{1,000} \right)^{2} + \left(\frac{500}{1,000} \right)^{2} \right\} + 490 \times \left(\frac{320}{1,000} \right)^{2}$ = 70.6 (kgm ²)
(2) Exa	mine the constant torque.		
T _R	Constant torque (Nm)	$T_{R} = W_{C} \times 9.8 \times \frac{C}{1,000}$	T _R = 490 × 9.8 × <u>320</u> 1,000 = 1,537 (Nm)

Step 3-2: Proceed to p. 114. (Refer to "With horizontal rotational transfer" for selection examples.)

Option: Base flange

echnical Information

Step 3-2. Set items required for selection

	Setting item	Calculation formula	Selection examples (With horizontal rotational transfer)
(3) Se	et the model code and series	code.	
Setting of mor RDS RDR RDP Setting of seri	del code (input type) - Straight input type - Right angle input type - Pulley input type ies code		Set the model code (input type) and series code (presence of the hollow section on the reduction gear output surface) according to the usage and application. As an example, the RDR (right angle input type) and hollow shaft series are set.
Solid series o	r nallow shaft series		t encod
(4) Se	et the acceleration/deceleratio	on time, constant-speed operation time, and outpu	Examine the operation pattern using No = 15 rpm as the
t ₁	- Acceleration time (sec)	 If the operation pattern bas not been determined, use the following formula to calculate the reference operation pattern. 	reduction gear output speed is unknown.
t2	Constant-speed operation time (sec)	$t_1 = t_3 = \text{Rotation time} [t_1 + t_2 + t_3] - \frac{\theta}{(N_2 \times 260)}$	$t_1 = t_3 = 2.5 - \frac{100}{\left(\frac{15}{60} \times 360\right)} = 0.5 \text{ (sec)}$
t3	- Deceleration time (sec)	$t_2 = \text{Rotation time } [t_1 + t_2 + t_3] - (t_1 + t_3)$	$t_2 = 2.5 - (0.5 + 0.5) = 1.5 (sec)$
N ₂	- Constant speed (rpm)	Note: 1. Assume that t1 and t3 are the same. Note: 2. N2 = 15 rpm if the reduction gear output speed (N2) is not known. Note: 3. If t1 and t3 is less than 0, increase the output speed or extend the rotation time.	$t_1 = t_3 = 0.5$ (sec) $t_2 = 1.5$ (sec) $N_2 = 15$ (rpm)
N ₁	Average speed for startup (rpm)	$N_1 = \frac{N_2}{2}$	$N_1 = \frac{15}{2} = 7.5$ (rpm)
N ₃	- Average speed for stop (rpm)	$N_3 = \frac{N_2}{2}$	$N_3 = \frac{15}{2} = 7.5$ (rpm)
(5) Ca	alculate the inertia torque for	acceleration/deceleration.	
Τ _Α	Inertia torque for acceleration (Nm)	$T_{A} = \left\{ \frac{I_{R} \times (N_{2} - 0)}{t_{1}} \right\} \times \frac{2\pi}{60}$	$T_{A} = \left\{ \frac{151.7 \times (15 - 0)}{0.5} \right\} \times \frac{2\pi}{60}$ $= 476.6 \text{ (Nm)}$
T _D	Inertia torque for deceleration (Nm)	$T_{\rm D} = \left\{ \frac{I_{\rm R} \times (0 - N_2)}{t_3} \right\} \times \frac{2\pi}{60}$	$T_{\rm D} = \left\{ \frac{151.7 \times (0 - 15)}{0.5} \right\} \times \frac{2\pi}{60}$ = -476.6 (Nm)
(6) Ca	alculate the load torque for ac	celeration/deceleration.	
Τ1	Maximum torque for startup (Nm)	$T_{1} = T_{A} + T_{R} $ T_{R} : Constant torque With horizontal rotational transfer (page 112) With vertical rotational transfer (page 113)	T ₁ = 476.6 + 27.5 = 504.1 (Nm)
T ₂	Constant maximum torque (Nm)	$T_2 = T_R $	T ₂ =27.5(Nm)
Τ ₃	Maximum torque for stop (Nm)	$\begin{array}{l} T_3 = \left T_{D} + T_{R} \right \\ T_{R} : \text{Constant torque} \\ \text{With horizontal rotational transfer (page 112)} \\ \text{With vertical rotational transfer (page 113)} \end{array}$	T ₃ = - 476.6 + 27.5 = 449.1 (Nm)
(7) -1 Ca	alculate the average speed.		
N m	- Average speed (rpm)	$N_{m} = \frac{t_{1} \times N_{1} + t_{2} \times N_{2} + t_{3} \times N_{3}}{t_{1} + t_{2} + t_{3}}$	$N_{m} = \frac{0.5 \times 7.5 + 1.5 \times 15 + 0.5 \times 7.5}{0.5 + 1.5 + 0.5}$ = 12 (rpm)
(7) -2 Ca	alculate the average load torq	ue.	
Τ _m	- Average load torque (Nm)	$T_{m}^{10} = \sqrt[1]{\frac{t_{1} \times N_{1} \times T_{1}^{\frac{10}{3}} + t_{2} \times N_{2} \times T_{2}^{\frac{10}{3}} + t_{3} \times N_{3} \times T_{3}^{\frac{10}{3}}}{t_{1} \times N_{1} + t_{2} \times N_{2} + t_{3} \times N_{3}}}$	$T_{m} = \frac{10}{3} \sqrt{\frac{0.5 \times 7.5 \times 504.1^{3} + 1.5 \times 15 \times 27.5^{3} + 0.5 \times 7.5 \times 449.1^{3}}{0.5 \times 7.5 + 1.5 \times 15 + 0.5 \times 7.5}}$ = 315.7 (Nm)

Go to Page 115 if the reduction gear model is verified based on the required life. Go to Page 117 if the service life is verified based on the reduction gear model.

Product Selection Model code selection examples

Step 4. Select a reduction gear

Reduction gear selection method (1) Calculate the required torque based on the load conditions and required life and select a reduction gear.

Se	etting/verification item	Calculation formula	Selection examples	
(1) Calculate the rated torque for th		ne reduction gear that satisfies the required life.	(with nonzontal rotational transfer)	
Lex	- Required life (vear)	Based on the operation conditions	5 years	
Q _{1cy}	Number of cycles per day (times)	$Q_{1cy} = \frac{Q_1 \times 60 \times 60}{t_4}$	$Q_{1cy} = \frac{12 \times 60 \times 60}{20}$ = 2,160 (times)	
Q3	Operating hours of reduction gear per day (h)	$Q_3 = \frac{Q_{tcy} \times (t_1 + t_2 + t_3)}{60 \times 60}$	$Q_3 = \frac{2,160 \times (0.5 + 1.5 + 0.5)}{60 \times 60}$ = 1.5 (h)	
Q4	Operating hours of reduction gear per year (h)	$Q_4 = Q_3 \times Q_2$	Q ₄ =1.5×365 = 548 (h)	
L _{hour}		$Lhour = Q_4 \times L_{ex}$	L _{hour} = 548 × 5 = 2,740 (h)	
то'——	Reduction gear rated torque — that satisfies the required life (Nm)	$ \begin{array}{l} T_0' = T_m \times (\frac{10}{3}) \sqrt{\frac{L_{hour}}{K} \times \frac{N_m}{N_0}} \\ K : Reduction gear rated life (h) \\ N_0 : Reduction gear rated torque (Nm) \end{array} $	$T_{0}' = 315.7 \times {\binom{10}{3}} \sqrt{\frac{2.740}{6,000} \times \frac{12}{15}}$ = 233.5 (Nm)	
(2)	Tentatively select a reduction g	ear model based on the calculated rated torque.		
Tentative selection of the reduction gear		Select a reduction gear for which the rated torque of the reduction gear [To] ¹ is equal to or greater than the rated torque of the reduction gear that satisfies the required life [To']. *1 [To]: Straight input type: See the rating table on pages 14 and 15. Right angle input type: See the rating table on pages 42 and 43. Pulley input type: See the rating table on page 70.	RDR-027C that meets the following condition is tentatively selected: $[T_0]$ 265 (Nm) \geq $[T_0']$ 233.5 (Nm)	
(3)	Verify the maximum torque for	startup and stop.		
Verification of maximum torque for startup and stop		Check the following conditions: The allowable acceleration/deceleration torque $[T_{s1}]^{-1}$ is equal to or greater than the maximum starting torque $[T_1]^{-2}$ and maximum stopping torque $[T_3]^{-2}$ If the tentatively selected reduction gear is outside of the specifications, change the reduction gear model. *1 [T_{s1}]: Straight input type: See the rating table on pages 14 and 15. Binth angle input type: See the rating table on pages 24 and 43	$\label{eq:static} \begin{array}{l} [T_{s1}] \ 662 \ (Nm) \geq [T_1] \ 504.1 \ (Nm) \\ [T_3] \ 449.1 \ (Nm) \end{array}$ According to the above conditions, the tentatively selected model should be no problem.	
		Pulley input type: See the rating table on page 70. *2 [T ₁] and [T ₃]: Refer to page 114		
(4)	Verify the output speed.			
N _{m0}	Average speed per cycle (rpm)	$N_{m0} = \frac{t_1 \times N_1 + t_2 \times N_2 + t_3 \times N_3}{t_4}$	$N_{m0} = \frac{0.5 \times 7.5 + 1.5 \times 15 + 0.5 \times 7.5}{20}$ = 1.5 (rpm)	
Verification	of output speed	Check the following condition: The allowable output speed (100% duty ratio) $[N_{s0}]^{+1}$ is equal to or greater than the average speed per cycle $[N_{m0}]$ If the tentatively selected reduction gear is outside of the specifications, change the reduction gear model. Contact us regarding use of the model at a speed outside the allowable output speed (40% duty ratio) $[N_{s1}]^{-1}$. Note: The value of $[N_{s0}]$ is the speed at which the case tempera- ture is balanced at 60°C for 30 minutes. *1 $[N_{s0}]$: Straight input type: See the rating table on pages 14 and 15. Right angle input type: See the rating table on pages 42 and 43. Pulley input type: See the rating table on page 70.	$[N_{s0}]$ 15 (rpm) ≥ $[N_{m0}]$ 1.5 (rpm) According to the above condition, the tentatively selected model should be no problem.	

Technical Information Option: Base flange

Product Selection Model code selection examples

Reduction gear selection method (1) Calculate the required torque based on the load conditions and required life and select a reduction gear.

Setting/verification item	Calculation formula	Selection examples (With horizontal rotational transfer)	
(5) Verify the shock torque at the t	ime of an emergency stop.		
P _{em} —Expected number of emergency stop times (times)	Based on the operation conditions.	For example, an emergency stop occurs once a month. [P _{em}] = 1 x 12 x required life (year) [L _{ex}] = 12 x 5 = 60 (times)	
T _{em} Shock torque due to an emergency stop (Nm)		For example, [T _{em}] = 500 (Nm)	
N _{em} ————————————————————————————————————	9 -T _{em}	For example, [N _{em}] = 15 (rpm)	
t _{em} Deceleration time at the time of an emergency stop (s)	$\overbrace{\underline{g}}_{\underline{g}} \underbrace{\underline{N_{em}}}_{Time (s)}$ Shock torque due to an emergency stop [Tem] Set the operation conditions that meet the following requirement: Shock torque due to an emergency stop [Tem] is equal to or less than the momentary maximum allowable torque [T_{s2}]	For example, [t _{em}] = 0.05 (s)	
Z ₄ Number of pins for reduction gear	Model Number of pins Z4 Model Number of pins Z4 RD6E RD10C RD10C RD40E RD50C 52 RD80E 40 RD10C RD50C RD70C 52 RD160E RD200C 56 RD320E RD320C 60	Number of pins for RDR-27C: 52	
C _{em} Allowable number of shock torque application times	$\begin{split} C_{em} = & \frac{775 \times \left(\frac{T_{S2}}{T_{em}}\right)^{\frac{10}{3}}}{Z_4 \times \frac{N_{em}}{60} \times t_{em}} \\ \text{Note} [T_{s2}]: \text{ Momentary maximum allowable torque} \\ & \text{Straight input type: See the rating table on pages 14 and 15.} \\ & \text{Right angle input type: See the rating table on pages 14 and 43.} \\ & \text{Pulley input type: See the rating table on page 70.} \end{split}$	$C_{em} = \frac{775 \times \left(\frac{1,323}{500}\right)^{\frac{10}{3}}}{52 \times \frac{15}{60} \times 0.05} = 30,550 \text{ (times)}$	
Verification of shock torque due to an emergency stop	Check the following condition: The allowable shock torque application count $[C_{em}]$ is equal to or greater than the expected emergency stop count $[P_{em}]$ If the tentatively selected reduction gear is outside of the specifications, change the reduction gear model.	$\label{eq:cem} \begin{array}{l} [C_{em}] \ 30,550 \geq [P_{em}] \ 60 \\ \mbox{According to the above condition, the tentatively} \\ selected model should be no problem. \end{array}$	
(6) Verify the thrust load and mom	ent load.		
W1 — R adial load (N)	Output shaft installation surface	0 (N)	
l Distance to the point of radial		0 (mm)	
W ₂ Thrust load (N)		In this example, $W_2 = W_A + W_B = (450+100 \times 4) \times 9.8$ = 8,330 (N) Note $W_{A_1} W_B$: Refer to page 112.	
ℓ_2 Distance to the point of thrust		0 (mm) (As the workpiece center is located on the	
M — Moment load (Nm)	$M = \frac{W_1 \times (\ell + b - a) + W_2 \times \ell_2}{1,000}$ a,b: Refer to the calculation of the tilt angle on page 126.	RDR-27C As dimension a = 38 (mm) and dimension b = 150 (mm): $M = \frac{0 \times (0 + 150 - 38) + 8,330 \times 0}{0 - 1000}$ $= 0 (Nm)$	
Verify the thrust load and moment load	Check that the thrust load and moment load are within the range in the allowable moment diagram on page 120. When radial load W_1 is applied within dimension b, use the reduction gear within the allowable radial load. Wr: Allowable radial load Straight input type: See the rating table on pages 14 and 15. Right angle input type: See the rating table on pages 42 and 43. Pulley input type: See the rating table on page 70. If the tentatively selected reduction gear is outside of the specifications, change the reduction gear model.	For this example, Thrust load $[W_2] = 8,330$ (N) Moment load $[M] = 0$ (Nm) As the above values are within the range in the allowable moment diagram, the tentatively selected model should be no problem.	
(7) Verify the input unit specificati	ons (page 119). (Verification is not required when	the input type is right angle or straight.)	
Select the reduction gear model that satisfie The actual reduction ratio is determined bas	s all the conditions of the above verification items.	Based on the above verification result, RDR-27C is selected.	
moment. Check with the motor manufacture	•		

Impose a limitation on the motor torque value according to the momentary maximum allowable torque of the selected reduction gear (see page 119).

Reduction gear selection method (2): Tentatively select a reduction gear model and evaluate the service life.

Setting/verification item	Calculation formula	Selection examples	
(1) Tentatively select a desired red	uction gear model.		
Tentative selection of a reduction gear	Tentatively select a desired reduction gear model.	For example, tentatively select RDR-027C.	
(2) Verify the maximum torque for	startup and stop.		
Verification of maximum torque for startup and stop	Check the following conditions: The allowable acceleration/deceleration torque [T _{s1}] ^{*1} is equal to or greater than the maximum starting torque [T ₁] ² and maximum stopping torque [T ₃] ² If the tentatively selected reduction gear is outside of the specifications, change the reduction gear model. *1 [T _{s1}]: Straight input type: See the rating table on pages 14 and 15. Right angle input type: See the rating table on pages 42 and 43. Pulley input type: See the rating table on page 70. *2 [T ₁] and [T ₃]: Refer to page 114	$[T_{s1}]$ 662 (Nm) ≥ $[T_1]$ 497.84 (Nm) $[T_3]$ 455.36 (Nm) According to the above conditions, the tentatively selected model should be no problem.	
(3) Verify the output speed.			
N _{m0} ——— Average speed per cycle (rpm)	$N_{m0} = \frac{t_1 \times N_1 + t_2 \times N_2 + t_3 \times N_3}{t_4}$	$N_{m0} = \frac{0.5 \times 7.5 + 1.5 \times 15 + 0.5 \times 7.5}{20}$ = 1.5 (rpm)	
Verification of output speed	Check the following condition: The allowable output speed (100% duty ratio) [N _{s0}] ⁻¹ is equal to or greater than the average speed per cycle [N _{m0}] If the tentatively selected reduction gear is outside of the specifica- tions, change the reduction gear model. Contact us regarding use of the model at a speed outside the al- lowable output speed (40% duty ratio) [N _{s1}] ⁻¹ . Note: The value of [N _{s0}] is the speed at which the case tempera- ture is balanced at 60°C for 30 minutes. *1 [N _{s0}]: Straight input type: See the rating table on pages 14 and 15. Right angle input type: See the rating table on pages 42 and 43. Pulley input type: See the rating table on pages 70.	$[N_{s0}]$ 15 (rpm) ≥ $[N_{m0}]$ 1.5 (rpm) According to the above condition, the tentatively selected model should be no problem.	
(4) Verify the shock torque at the t	ime of an emergency stop.		
P _{em} Expected number of emergency stop times (times)	Based on the operation conditions.	For example, an emergency stop occurs once a month. [Pem] = 1 x 12 x required life (year) [Lex] = 12 x 5 = 60 (times)	
T _{em} — Shock torque due to an emergency stop (Nm)	(LLL)	For example, [T _{em}] = 500 (Nm)	
N _{em} ————————————————————————————————————	-T _{em}	For example, [N _{em}] = 15 (rpm)	
t _{em} Deceleration time at the time of an emergency stop (s)	Image: Shock torque due to an emergency stop [Tem] Set the operation conditions that meet the following requirement: Shock torque due to an emergency stop [Tem] is equal to or less than the momentary maximum allowable torque [Ts2]	For example, [t _{em}] = 0.05 (s)	
Z ₄ Number of pins for reduction gear	Model Number of pins Z4 Model Number of pins Z4 RD6E RD RD RD RD RD40E RD RD S2 RD RD40E RD RD S2 RD RD80E RD RD RD S2 RD160E RD RD S6 RD RD320E RD S2 S6	Number of pins for RDR-27C: 52	
C _{em} Allowable number of shock torque application times	$\begin{split} C_{em} = \frac{775 \times \left(\frac{T_{S2}}{T_{em}}\right)^{\frac{10}{3}}}{Z_4 \times \frac{N_{em}}{60} \times t_{em}} \\ \text{Note } [T_{s2}]: \text{ Momentary maximum allowable torque } \\ \text{Straight input type: See the rating table on pages 14 and 15.} \\ \text{Right angle input type: See the rating table on pages 14 and 43.} \\ \text{Pulley input type: See the rating table on page 70.} \end{split}$	$C_{em} = \frac{775 \times \left(\frac{1,323}{500}\right)^{\frac{10}{3}}}{52 \times \frac{15}{60} \times 0.05} = 30,550 \text{ (times)}$	
Verification of shock torque due to an emergency stop	Check the following condition: The allowable shock torque application count $[C_{em}]$ is equal to or greater than the expected emergency stop count $[P_{em}]$ If the tentatively selected reduction gear is outside of the specifications, change the reduction gear model.	$[C_{em}]$ 30,550 \geq $[P_{em}]$ 60 According to the above condition, the tentatively selected model should be no problem.	

Option: Base flange

Technical Information

Product Selection Model code selection examples

Reduction gear selection method (2): Tentatively select a reduction gear model and evaluate the service life.

Setting/verification item	Calculation formula	Selection examples (With horizontal rotational transfer)		
(5) Verify the thrust load an	d moment load.			
W ₁ R adial load (N)	Output shaft installation surface	0 (N)		
e Distance to the point of	fradial	0 (mm)		
load application (mm)				
W ₂ Thrust load (N)		$W_2 = W_A + W_B = (450+100\times4)\times9.8$ = 8,330 (N) Note WA, Wa : Refer to page 112.		
ℓ ₂ Distance to the point of load application (mm)	f thrust $W(x(l + b-a)+W_0 x l)$	0 (mm) (As the workpiece center is located on the rotation axis)		
M — Moment load (Nm)	$M = \frac{W_1 - (e^{-1}b^2 a) + W_2 + e_2}{1,000}$ a,b: Refer to the calculation of the tilt angle on page 126.	RDR-27C As dimension a = 38 (mm) and dimension b = 150 (mm): $M = \frac{0 \times (0 + 150 - 38) + 8,330 \times 0}{1,000}$ = 0 (Nm)		
Verify the thrust load and moment loa	Check that the thrust load and moment load are within the range in the allowable moment diagram on page 120. When radial load W1 is applied within dimension b, use the reduction gear within the allowable radial load. Wr: Allowable radial load Straight input type: See the rating table on pages 14 and 15. Right angle input type: See the rating table on pages 42 and 43. Pulley input type: See the rating table on page 70. If the tentatively selected reduction gear is outside of the specifications, change the reduction gear model.	For this example, Thrust load $[W_2]$ =8,330 (N) Moment load $[M]$ = 0 (Nm) As the above values are within the range in the allowable moment diagram, the tentatively selected model should be no problem.		
(6) Verify the reduction gea	r service life.			
L _h ———— Life (h)	$L_{h} = 6,000 \times \frac{N_{0}}{N_{m}} \times \left(\frac{T_{0}}{T_{m}}\right)^{\frac{10}{3}}$	$L_{h} = 6,000 \times \frac{15}{12} \times \left(\frac{265}{315.7}\right)^{\frac{10}{3}} = 4,184.4 \text{ (h)}$		
Q _{1cy} ——— Number of cycles per day	(times) $Q_{1cy} = \frac{Q_1 \times 60 \times 60}{t_4}$	$Q_{1cy} = \frac{12 \times 60 \times 60}{20} = 2,160 \text{ (times)}$		
Q ₃ ——— Operating hours per d	ay (h) $Q_3 = \frac{Q_1 \times (t_1 + t_2 + t_3)}{60 \times 60}$	$Q_3 = \frac{2,160 \times (0.5 + 1.5 + 0.5)}{60 \times 60} = 1.5 \text{ (h)}$		
Q ₄ — Operating hours per y	ear (h) $Q_4 = Q_3 \times Q_2$	Q ₄ = 1.5 × 365 = 548 (h)		
Lyear — Reduction gear service lif	e (year) $L_{year} = \frac{L_h}{Q_4}$	$L_{year} = \frac{4,180}{548} = 7.6$ (year)		
L _{ex} ——— Required life (year)	Based on the operation conditions	5 years		
Verification of the service life	Check the following condition: [L _{ex}] is equal to or less than [L _{year}] If the tentatively selected reduction gear is outside of the specifications, change the reduction gear model.	$\label{eq:Lex} \begin{array}{l} \mbox{5 (year)} \leq \mbox{[Lyear]} \ 7.6 \ (year) \\ \mbox{According to the above condition, the tentatively selected} \\ \mbox{model should be no problem.} \end{array}$		
(7) Verify the input unit specifications (page 119). (Verification is not required when the input type is right angle or straight.)				
Select the reduction gear model that	satisfies all the conditions of the above verification items.			
The actual reduction ratio is determin	The actual reduction ratio is determined based on the motor speed, input torque, and inertia is selected.			

Impose a limitation on the motor torque value according to the momentary maximum allowable torque of the selected reduction gear (see page 119).

Product Selection Model code selection examples

Step 5. Verify the input unit specifications (calculation method of pulley input unit specifications)

Limitation on the motor torque

A limitation is imposed on the motor torque value so that the shock torque applied to the reduction gear does not exceed the momentary maximum allowable torque.

Setti	ng/verification item	Calculation formula	Selection examples (With horizontal rotational transfer)
Т _{М1}	Motor momentary maximum torque (Nm)	Determine based on the motor specifications.	For example, T _{M1} = 10 (Nm)
Тм1оит	Maximum torque generated at the output shaft for the reduction gear (Nm)	$T_{M1out} = T_{M1} \times R \times \frac{100}{\eta}$ R: Speed ratio η : Startup efficiency (%)	For example, calculate the maximum torque generated at the output shaft for the reduction gear based on the specifications when RDS-027C-233.45 was selected. $T_{M1out} = 10 \times 233.45 \times \frac{100}{70}$
(When an extern emergency stop	al shock is applied at the time of an or motor stop)	Straight input type: See the rating table on pages 14 and 15. Right angle input type: See the rating table on pages 42 and 43. Pulley input type: See the rating table on page 70.	= 3,335(Nm)
Тм2оит	Maximum torque generated at the output shaft for the reduction gear (Nm)	$T_{M2out} = T_{M1} \times R \times \frac{\eta}{100}$	$T_{M2out} = 10 \times 233.45 \times \frac{70}{100}$
(When a shock is hitting by an obs	s applied to the output shaft due to tacle)		= 1,634(Nm)
Limitation on	motor torque value	Check the following condition: The momentary maximum allowable torque $[T_{S2}]^{-1}$ is equal to or greater than the maximum torque generated at the output shaft for the reduction gear $[T_{M1OUT}]$ and $[T_{M2OUT}]$ If the above condition is not satisfied, a limitation is imposed on the maximum torque value of the motor. *1 [T_{S2}]: Straight input type: See the rating table on pages 14 and 15. Right angle input type: See the rating table on pages 42 and 43. Pulley input type: See the rating table on page 70.	$[T_{S2}]$ 1,323 (Nm) ≤ $[T_{M10UT}]$ 3,335 (Nm) and $[T_{M20UT}]$ 1,634 (Nm) According to the above condition, the torque limit is set for the motor.
Select a motor flange and bushing.			
vinen the reduction gear selection is completed, select a motor flange and bushing. (Refer to pages 83 to 85.) URL : http://precision.nabtesco.com/			

echnical Information \

Product Selection Allowable Moment Diagram

Technical Data **No-load Running Torque** (straight input type)

Use the following formula to calculate the no-load running torque converted to the motor shaft.

[Measurement conditions] Case temperature: 30 (°C) Lubricant: Grease (RV GREASE LB00)

Note: The values in the following graphs are for the reduction gear alone, and indicate the average values after the break-in period.

Solid series

Technical Data No-load Running Torque (straight input type)

Hollow shaft series

101 3.5 No-load running torque 3 (input shaft) (Nm) 172 172 172 172 172 172 172 172 150 210 258 0.5 0 0 500 1,000 1,500 2,000 2,500 3,000 3,500 Input speed (rpm)

RDS-027C

RDS-200C

RDS-100C

RDS-320C

Technical Data **No-load Running Torque** (Right angle input type)

Solid series

RDR-020E

RDR-320E

RDR-160E

Technical Data **No-load Running Torque** (Right angle input type)

Hollow shaft series

RDR-027C

RDR-200C

RDR-100C

RDR-050C

RDR-320C

- 124

Technical Data **No-load Running Torque** (Pulley input type)

Solid series

Hollow shaft series

echnical Information

Technical Data Calculation of Tilt Angle and Torsion Angle

Calculation of tilt angle

 $\theta = \frac{W_1\ell_1 + W_2\ell_2}{M_1 \times 10^3}$

When a load moment occurs with an external load applied, the output shaft will tilt in proportion to the load moment (If ℓ_3 is larger than b)

The moment rigidity indicates the rigidity of the main bearing, and it is represented by the load moment value required for tilting the main bearing by 1 arc.min.

а

 $\ell_1,\,\ell_2$: Distance to the point of load application (mm)

$$\ell_1 \qquad :\ell + \frac{b}{2} -$$

 Distance from the output shaft installation surface to the point of load application (mm)

	Moment rigidity	Dimensio	ons (mm)	
Model code	Typical Value (Nm/arc.min.)	а	b	
RD□-006E	117	12.5	90.3	
RD□-020E	372	20.1	113.3	
RD□-040E	931	29.9	144.5	
RD□-080E	1,176	27.9	164.0	
RD□-160E	2,940	42.7	210.0	
RD□-320E	4,900	48.4	251.4	

	Moment rigidity	Dimensions (mm)		
Model code	Typical Value (Nm/arc.min.)	а	b	
RD□-010C	421	28.0	119.2	
RD□-027C	1,068	38.0	150.0	
RD□-050C	1,960	50.5	187.3	
RD□-100C	2,813	58.7	207.6	
RD□-200C	9,800	76.0	280.4	
RD□-320C	12,740	114.5	360.4	

Calculation of torsion angle

Calculate the torsion angle when the torque is applied in a single direction, using an example of RDD-160E.

- 1) When the load torque is 30 Nm. Torsion angle (ST₁)
 - When the load torque is 3% or less of the rated torque

$$ST_1 = \frac{30}{47} \times \frac{1 \text{ (arc.min.)}}{2} = 0.32 \text{ arc.min. or less}$$

- 2) When the load torque is 1,300 Nm Torsion angle (ST₂)
 - When the load torque is more than 3% of the rated torque

$$ST_2 = \frac{1}{2} + \frac{1,300 - 47.0}{392} = 3.70 \text{ arc.min.}$$

Note: 1. The torsion angles that are calculated above are for a single reduction gear.

	Torsion rigidity	Lost r	notion	Backlach			Torsion rigidity	Lost r	notion	Backlach
Model code	Typical Value Nm/arc.min.	Lost motion arc.min.	Measured torque Nm	arc.min. Model code Typic	Model code	Model code Typical Value Nm/arc.min.		Lost motion arc.min.	Measured torque Nm	arc.min.
RD□-006E	20	For RDS 1.5 For RDR 2.0	± 1.76	For RDS 1.5 For RDR 2.0		RD□-010C	47	For RDS or RDP	± 2.94	For RDS or RDP
RD□-020E	49		± 5.00			RD□-027C	147	1.0	± 7.94	1.0
RD□-040E	108	For RDS or RDP	± 12.3	For RDS or RDP		RD□-050C	255	For RDR	± 14.7	For RDR
RD□-080E	196	1.0	± 23.5	1.0		RD□-100C	510	1.0	± 29.4	1.0
RD□-160E	392	1.5	± 47.0	1.5		RD□-200C	980		± 58.8	
RD□-320E	980		± 94.0			RD□-320C	1,960		± 94.1	

Installation direction of RD2 Series

If you use the hollow shaft types installed vertically with the shaft facing upward (as shown in the figures below), contact our customer representative in advance.

Note1: For the solid type, the installation direction shown in the figures below can be used.

- 2: If you are using the previous RD series and wish to use the RD2 series with the same conditions, the installation direction shown in the figures below can be used.
- 3: If the reduction gear is used under operating conditions where the surface temperature of the reduction gear exceeds 40°C, the installation direction shown in the figures below can be used.

Lubrication

• The standard lubricant for RD2 Series is grease.

RD2 Series are pre-lubricated with our recommended RV GREASE LB00 grease when shipped. When this product is operated while it is filled with an appropriate amount of lubricant, the standard lubricant replacement time due to lubricant degradation is 20,000 hours. However, if RD2 Series are operated under unfavorable conditions (that may deteriorate the lubricant more quickly or that cause gear surface temperatures above 40°C), the state of lubricant degradation should be checked and the lubricant replaced earlier as necessary.

<Nabtesco-specified lubricant>

Brand	RV GREASE LB00	
Manufacturer	Nabtesco	
Ambient temperature	-10 to 40°C	

 It is recommended that the running-in operation is performed. Abnormal noise or torque variation may occur during operation due to the characteristics of the lubricant. There is no problem with the quality when the symptom disappears after the running-in operation is performed for 30 minutes or more (until the surface temperature of the RD2 body reaches around 50°C).

Installation of the reduction gear and mounting it to the output shaft

When installing the reduction gear and mounting it to the output shaft, use hexagonal socket head cap screw and tighten to the torque, as specified below, in order to satisfy the momentary maximum allowable torque, which is noted in the rating table.

Employment of the Belleville spring washer is recommended to prevent the bolt from loosening and protect the bolt seat surface from flaws.

<Bolt tightening torque and tightening force>

Hexagon socket head cap screw nominal size x pitch (mm)	Tightening torque (Nm)	Tightening force F (N)	Bolt specification
M5 × 0.8	9.01 ± 0.49	9,310	
M6 × 1.0	15.6 ± 0.78	13,180	Hexagon socket head cap screw
M8 × 1.25	37.2 ± 1.86	23,960	JIS B 1176 : 2006
M10 × 1.5	73.5 ± 3.43	38,080	
M12 × 1.75	129 ± 6.37	55,100	Thread
M16 × 2.0	319 ± 15.9	103,410	JIS B 0209 : 2001 6 g
M20 × 0.5	493 ± 24.6	132,170	

Note: 1. The tightening torque values listed are for steel or cast iron material.

2. If softer material, such as aluminum or stainless, is used, limit the tightening torque. Also pay attention to the system requirements of the transmission torque and the allowable moment.

<Calculation of allowable transmission torque of bolts>

	Т	Allowable transmission torque by tightening bolt (Nm)
	F	Bolt tightening force (N)
D	D	Bolt mounting P.C.D. (mm)
$T = F \times \frac{D}{2} \times \mu \times n \times 10^{-3}$	μ	Friction factor
Ζ		µ=0.15: When lubricant remains on the mating face.
		µ=0.20: When lubricant is removed from the mating face.
	n	Number of bolts (pcs.)

<Serrated lock washer for hexagonal socket head cap screw>

Name: Belleville spring washer (made by Heiwa Hatsujyo Industry Co., Ltd.) Corporation symbol: CDW-H

CDW-L (only for M5)

Material: S50C to S70C Hardness: HRC 40 to 48

				(Unit: mm)
Nominal size	ID and OD of Belleville spring washer		t	н
	Ød	ØD		
5	5.25	8.5	0.6	0.85
6	6.4	10	1.0	1.25
8	8.4	13	1.2	1.55
10	10.6	16	1.5	1.9
12	12.6	18	1.8	2.2
16	16.9	24	2.3	2.8
20	20.9	30	2.8	3.55

Note: When using any equivalent washer, select it with special care given to its outside diameter D.

Appendix Inertia Moment Calculation Formula

Troubleshooting checksheet

Check the following items in the case of trouble like abnormal noise, vibration, or malfunctions.

When it is not possible to resolve an abnormality even after verifying the corresponding checkpoint, obtain a "Reduction Gear Investigation Request Sheet" from our Website, fill in the necessary information, and contact our Customer Support Center.

[URL]: http://precision.nabtesco.com/documents/request.html

The trouble started immediately after installation of the reduction gear

Checked	Checkpoint
	Make sure the equipment's drive section (the motor side or the reduction gear output surface side) is not interfering with another component.
	Make sure the equipment is not under a greater than expected load (torque, moment load, thrust load).
	Make sure the required number of bolts are tightened uniformly with the specified tightening torque.
	Make sure the reduction gear, motor, or your company's components are not installed at a slant.
	Make sure the specified amount of Nabtesco-specified lubricant has been added.
	Make sure there are no problems with the motor's parameter settings.
	Make sure there are no components resonating in unity.
	Make sure the input gear is appropriately installed on the motor.
	Make sure there is no damage to the surface of the input gear teeth.
	Make sure the input gear specifications (precision, number of teeth, module, shift coefficient, dimensions of each part) are correct.
	Make sure the flange and other components are designed and manufactured with the correct tolerances.

The trouble started during operation

Checked	Checkpoint
	Make sure the equipment has not been in operation longer than the calculated service life.
	Make sure the surface temperature of the reduction gear is not higher than normal during operation.
	Make sure the operation conditions have not been changed.
	Make sure there are no loose or missing bolts.
	Make sure the equipment is not under a greater than expected load (torque, moment load, thrust load).
	Make sure the equipment's drive section is not interfering with another component.
	Make sure an oil leak is not causing a drop in the amount of lubricant.
	Make sure there are no external contaminants in the gear, such as moisture or metal powder.
	Make sure no lubricant other than that specified is being used.

 Are FAX 	ea In North and South Ameri X USA: 1-248-553-3070	ca / In Euro / Germar / 49-211	pe and Africa / In Asia and others ny: / Osaka Sales Office: -364677 / 81-6-6341-7182
Ord	ler Information Sh	ieet (Please	complete the form below) Date.
ompany	/ Name:	Dept	. Name:
ame.		 F-m;	il.
EL.		FAX.	
◆ Sys We wo ing tha tia more	stem configuration and selected build appreciate if you could provide your at helps us to understand the speed, cons ment of the output shaft for the reduction	motor system configuration stant torque, and lo gear.	on draw- bad iner-
			g g Bolt size c
Motor m	podel	a	Motor mounting pilot diameter (mm)
P	Motor rated output (KW)	b	Motor mounting bolt P.C.D (mm)
Тмо	Motor rated torque (Nm)	с	Motor mounting bolt size (mm)
T _{M1}	Motor momentary maximum torque (Nm)	d	Motor shaft length (mm)
Νмο	Motor rated speed (rpm)	e	Motor shaft diameter (mm)
		g	Motor shaft effective length (mm)
◆ Op	eration pattern (output shaft for the reduct	ion gear) ♦ E	Please inform us of whether a key is attached or not, and when it is attached, also inform us of its dimensions.
	Budget for the second state of the second stat		
t1	Acceleration time (s)		$W_2 \qquad \qquad$
t2	Constant speed operation time (s)		
t3	Deceleration time (s)		
t 4	One operation cycle time (s)		
Q1CY	Number of operation cycles per day (times)	W	Radial load (N)
Q2	Number of operating days per year (days)	ρ	Distance to the point of radial load
NL.	Constant an and (mms)	č	
IN2	Constant speed (rpm)		application (mm)
N 2 T 1	Max. torque for startup (Nm)	W	application (mm) Thrust load (N)
N2 T1 T2	Constant speed (rpm) Max. torque for startup (Nm) Constant torque (Nm)	W:	application (mm) Thrust load (N) Distance to the point of thrust load

Warranty

- In the case where Nabtesco confirms that a defect of the Product was caused due to Nabtesco's design or manufacture within the Warranty Period of the Product, Nabtesco shall repair or replace such defective Product at its cost. The Warranty Period shall be from the delivery of the Product by Nabtesco or its distributor to you ("Customer") until the end of one (1) year thereafter, or the end of two thousand (2,000) hours from the initial operation of Customer's equipment incorporating the Product at end user's production line, whichever comes earlier.
- 2. Unless otherwise expressly agreed between the parties in writing, the warranty obligations for the Product shall be limited to the repair or replacement set forth herein. OTHER THAN AS PROVIDED HEREIN, THERE ARE NO WARRATIES ON THE PRODUCT, EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
- 3. The warranty obligation under the Section 1 above shall not apply if:
 - a) the defect was caused due to the use of the Product deviated from the Specifications or the working conditions provided by Nabtesco;
 - b) the defect was caused due to exposure to foreign substances or contamination (dirt, sand etc.)
 - c) lubricant or spare part other than the ones recommended by Nabtesco was used in the Product;
 - d) the Product was used in an unusual environment (such as high temperature, high humidity, a lot of dust, corrosive/volatile/inflammable gas, pressurized/depressurized air, under water/liquid or others except for those expressly stated in the Specifications);
 - e) the Product was disassembled, re-assembled, repaired or modified by anyone other than Nabtesco;
 - f) the defect was caused due to the equipment into which the Product was installed;
 - g) the defect was caused due to an accident such as fire, earthquake, lightning, flood or others; or
 - h) the defect was due to any cause other than the design or manufacturing of the Product.
- 4. The warranty period for the repaired/replaced Product/part under the Section 1 above shall be the rest of the initial Warranty Period of the defective Product subjected to such repair/replace.

Europe and Africa	Nabtesco Precision Europe GmbH Tiefenbroicher Weg 15, 40472 Düsseldorf, Germany TEL: +49-211-173790 FAX: +49-211-364677 E-MAIL: info@nabtesco.de www.nabtesco.de	
North and South America	Nabtesco Motion Control Inc. 23976 Freeway Park Drive, Farmington Hills, MI 48335, USA TEL: +1-248-553-3020 FAX: +1-248-553-3070 E-MAIL: engineer@nabtescomotioncontrol.com www.nabtescomotioncontrol.com	
China	Shanghai Nabtesco Motion-equipment Co., Ltd. Room 1706, No. 388 Fu Shan Road, Pudong New Area, Shanghai 200122, China TEL: +86-21-3363-2200 FAX: +86-21-3363-2655 E-MAIL: info@nabtesco-motion.cn www.nabtesco-motion.cn	
India	Nabtesco India Private Limited No. 506, Prestige Meridian - II No.30/8, M.G. Road, Bangalore-560 001 India TEL: +91-80-4123-4901	
Asia and others	Nabtesco Corporation Osaka Sales Office 21st Fl, Dojima Avanza, 1-6-20 Dojima, Kita-ku, Osaka 530-0003, Japan TEL: +81-6-6341-7180 FAX: +81-6-6341-7182	
	Tsu Plant 594 Icchoda, Katada-cho, Tsu, Mie 514-8533, Japan TEL: +81-59-237-4600 FAX: +81-59-237-4610	
	E-MAIL: P_Information@nabtesco.com http://precision.nabtesco.com/	
 Nabtesco, RV are registered t Specifications are subject to c The PDF data of this catalog of http://precision.nabtesco.com/ If any addition or modification Due to this, please note that s Unauthorized reprinting, repro- 	rademarks or trademarks of Nabtesco Corporation. hange without notice. can be downloaded from the following website. is made to the published information, the PDF data may be updated before the printe ome contents of the PDF data may be changed or revised from those in this catalog. duction, copying, or translation of this catalog in whole or in part is strictly prohibited.	d catalog.